Chapter 8 Density

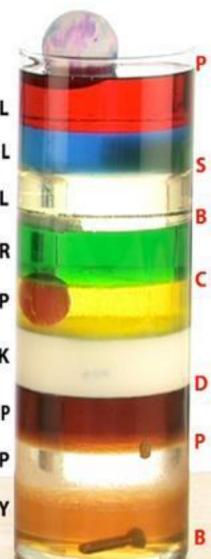
LAMP OIL RUBBING ALCOHOL

VEGETABLE OIL

WATER

DISH SOAP

MILK


100% MAPLE SYRUP

CORN SYRUP

http://www.youtube.com/watch?

HONEY

CDKWo LYs&feature=fvwp&NR

PING PONG BALL

SODA CAP

BEADS

CHERRY TOMATO

DIE

POPCORN KERNEL

BOLT

Mass

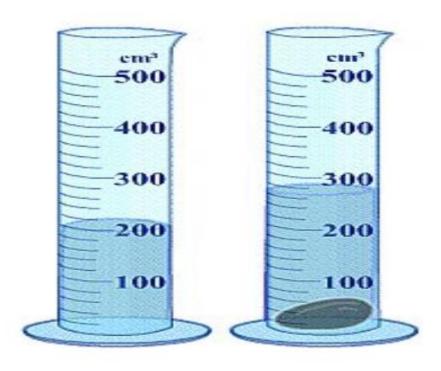
The amount of matter in a substance.

mass is the same everywhere

measured in grams (g)

Volume

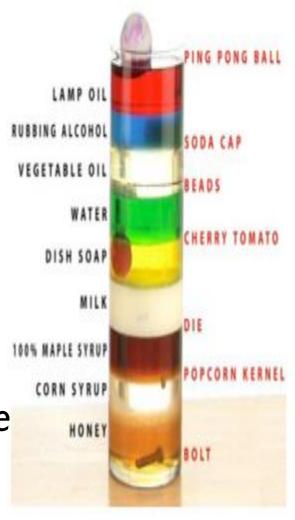
 The amount of space occupied by a substance.


volume of solids are measured in cm³

volume of liquids are measured in mL

• $I \text{ cm}^3 = I \text{ mL}$

How can we measure volume? Displacement of water


http://phet.colorado.edu/en/simulation/density

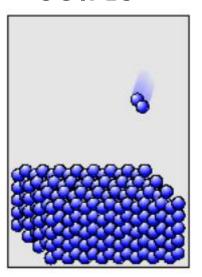
Density

- A measure of the mass contained in a given volume.
- Measured in g/cm³ (Fluid) or g/mL (Liquid)
- Recall from unit 1: Describes how closely packed together the particles are in a material

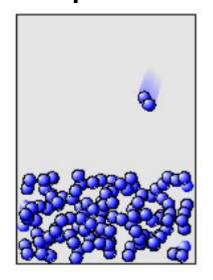
- A substance with a lower density will float on liquids with higher densities remember from the lab, tap water floated on top of the salt water because the salt water had a higher density
- A substance with a higher density will sink in liquids with lower densities remember also from the lab, the salt water in the dropper sank to bottom

Density and the PTM

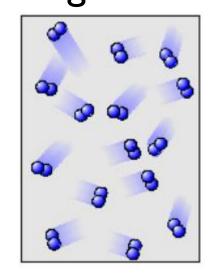
- Particle Theory of Matter:
 - different substances have different sized particles
 - there are spaces between the particles


	Solid	Liquid	Gas
Particles	Very Close	Close	Far Apart
Density	High	Moderate	Low

 The larger the spaces between the particles, the less particles, and therefore the lower the density.


Density of solid, liquids, and gases

In general:


Density of solids

Density of liquids

Density of gases

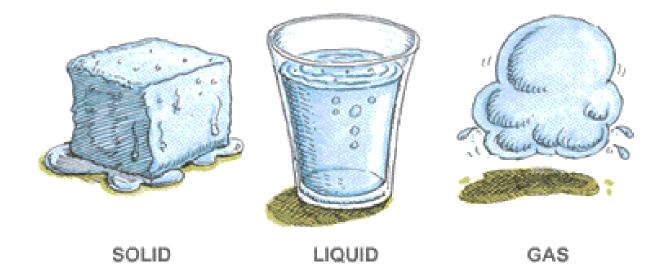
Examples: Which is more dense?

lead VS.

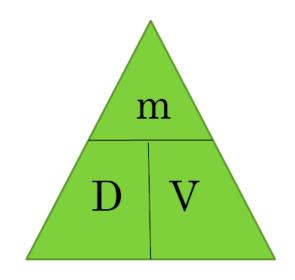
Corn syrup vs.

Helium

VS.


air

EXCEPTION ALERT!!


Water

 Liquid water is MORE dense than both the solid state (ice) and gas state (steam/water vapour).

Formula:

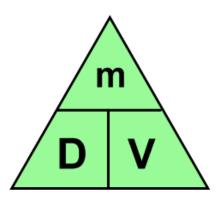
Volume (V) =
$$\underline{\text{Mass (m)}}$$

Density (D)

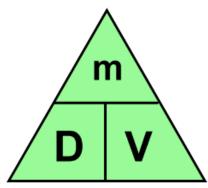
Mass = Density (D) \times Volume (V)

NOTE: The mass – to – volume ratio of a material is a constant value!

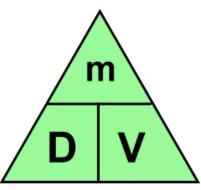
For some examples we will need to use the table on page 312 of your textbook.


Table 8.1 Approximate Densities of Common Fluid Substances and Solid Substances

Fluid	Density (g/mL)	Solid	Density (g/cm³)
hydrogen	0.00009	styrofoam	0.005
helium	0.0002	cork	0.24
air	0.0013	oak	0.70
oxygen	0.0014	sugar	1.59
carbon dioxide	0.002	salt	2.16
ethyl alcohol	0.79	aluminum	2.70
machine oil	0.90	iron	7.87
water	1.00	nickel	8.90
seawater	1.03	copper	8.92
glycerol	1.26	lead	11.34
mercury	13.55	gold	19.32


If a cube has a mass of 4g and a volume of 2cm³, what is the density?

m


You want to put 10g of salt into a container. What is the volume of the container if the salt completely fills it? (refer to table on page 312)

If a liquid has a density of 6g/mL and a volume 3mL, what is the mass?

Find the density of a 10g mass of a substance that has a volume of 2.0cm³.

Density Assignment

Core Lab 8-2B:Determining Density
 Read the Procedure on Page 317-318

Changes in temperature and density

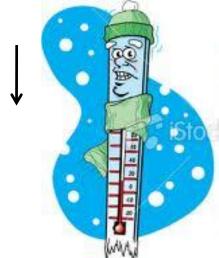
When the temperature of a substance changes, it changes the density, and therefore the state changes.



Particles gain energy

Spread out

Volume increases



Density decreases \

Solids, liquids, and gases expand.

http://phet.colorado.edu/en/simulation/state s-of-matter

Particles lose energy

Move closer together

Volume decreases

Density increases 1

Solids, liquids, and gases contract.

http://phet.colorado.edu/en/simulation/state s-of-matter

Hot air balloon

Warm vs. cold air in tires

• 3 states of water (water is densest as a liquid because water particles move apart as they **freeze**)

Examples:

Drying of wood

Salt water is easier to float in than fresh water

http://www.teachertube.com/viewVideo.php?video_id=207631

Explain why...

 A helium-filled balloon shrinks when exposed to cold temperatures

 Alcohol, in a thermometer, rises when heated

 Vinyl siding installed during cold weather must have spaces between each piece

Power lines sag in the summer