Grade 8 Science: Unit 2-Fluids

Chapter 9: Force, Pressure Area

- Key Terms: hydraulic systems, incompressible, mass, neutral buoyancy, pascal, pneumatic systems, pressure, unbalanced forces, weight, Archimedes' principle, average density, balanced forces, buoyancy, buoyant force, compressibility, force
- Anything that causes a change in the motion of an object.
\bullet \qquad

Balanced forces:

1. \qquad
2. \qquad
3. \qquad
Unbalanced Forces:
4. \qquad
5. \qquad

Mass vs. Weight

Mass

1. \qquad
2. \qquad
3. \qquad
Weight
4. \qquad
5. \qquad
6. \qquad

- The \qquad force on an object submerged in or floating on a fluid.
- A floating object has \qquad
- A sinking object does not.
- Buoyant force \qquad the weight (force of gravity) of the fluid displaced by an object.

Examples:

- A rock sinking in a lake
- Weight of rock > buoyant force (weight of water rock displaces)
- A chunk of wood floating on the surface of a lake
- NEUTRAL BUOYANCY
- weight of the wood = Buoyant force (weight of water wood displaces)
- A helium balloon rising
- Weight of helium balloon < buoyant force (weight of air balloon displaces)

When swimming why you do sink when you roll yourself into a ball, but you float when you lie flat on your back?

- When in a ball you weigh \qquad than the water you displaced.
- As you lie back a \qquad of volume of water is displaced
- The weight of the displaced water is now \qquad than your weight and you float.

Density and Buoyancy

- If the density of the immersed object is \qquad than the density of the fluid, it will \qquad —.
- If an object weighs the \qquad than the water it is displacing, it will \qquad .
Which will sink and which will float?
- wooden boat vs. water logged stick?
- metal block vs. metal boat?
- a sealed empty plastic bottle vs. a plastic bottle full of water?

Average Density

- The total mass of all substances that make up an object divided by the total volume.
- If the volume of an object is \qquad , the average density will
\qquad
See figure 9.10 page 341

Technologies Developed

1.

The average density of the person and the jacket is \qquad than the density of water
(floats). The density of the person alone is \qquad than water (sinks).
2. \qquad
The sub lets water flow in to sink (density \qquad). and flow out to
float (density \qquad)..
3. \qquad
Air inside is forced out when heated (density \qquad). The air inside is then less dense than the air outside and the balloon \qquad _.

Pressure

1. \qquad
2. \qquad
3. \qquad
See figures 9.14-9.16 page 350

- The pressure exerted by the layers of air surrounding the Earth that are held by the Earth's gravity. (~ 160 km above the Earth)

Calculating Pressure

- The unit for pressure is the \qquad
- $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
- You can determine pressure if you know the force and the area.

Formula:

SAMPLE PROBLEMS

1. An aquarium is filled with water that weighs 10000 N . If the base of the aquarium has an area of $1.6 \mathrm{~m}^{2}$, what pressure does the water exert on its base?
2. If the atmospheric pressure is 101200 Pa and you are holding your hand, the atmosphere is exerting a force on your hand. If the area of your palm is $0.006 \mathrm{~m}^{2}$, calculate the force on your hand.
3. The weight of water in a glass is 4.9 N . If the water is exerting a pressure of 1700 Pa on the bottom of the glass, what is the area of the bottom of the glass?

Why can....

A person wearing snowshoes walk across a section of deep, soft snow without sinking?

The nozzle on a garden hose be used to create a faster or slower flow of water?

- Pressure applied to a enclosed fluid is transmitted with \qquad force throughout the entire container
- Basis for hydraulic and pneumatic devices.

Examples:

- car lift or hoist
- hydraulic jack
- automobile braking system
- air compressors
- automobile/bicycle tires

HYDRAULICS

- The study of pressure in \qquad .
- Hydraulic systems:
- devices that transmit applied force through a liquid to move something else.
- Hydraulic systems use \qquad because they are
\qquad (they cannot be squeezed into a smaller volume).
- The liquid must be enclosed in a tube or pipe.
- The pressure produced will exert in all directions \qquad .
- This pressure will cause \qquad at the other end of the hydraulic system.

PNEUMATIC SYSTEMS

- The study of pressure in \qquad .
- Compressors are necessary as gases can be \qquad -
- They build up air pressure.

Summary:

Property	Hydraulic System	Pneumatic System
State		
Volume		
Pressure		

PRESSURE \& VOLUME

- \qquad pressure of a fluid will \qquad volume by the same amount.
- known as Boyle's Law

Example: Propane Cylinders (Page 366)

\qquad in pressure with a \qquad in volume at constant temperature.

TEMPERATURE \& VOLUME
\qquad temperature will \qquad the volume of a fluid.

TEMPERATURE \& PRESSURE

\bullet temperature of a fluid will \qquad the pressure.

In other words...
If the temperature of a fluid is constant (not changing)...

If the pressure of a fluid is constant...

If the volume of a fluid is constant...

Why does this symbol appear on aerosol cans?

