Lesson 1: Variables and Graphing

Variables

The things that are changing in an experiment are called variables. A *variable* is any factor, trait, or condition that can exist in differing amounts or types. An experiment usually has **three kinds** of variables: **independent**, **dependent**, and **controlled**.

In a scientific inquiry, we speak of "isolating variables".

Comparing types of soil

Manipulated/Independent variable: is the variable that is being changed or compared by the scientist.

Example: Type of Soil

This is represented on the x-axis of your graph.

Comparing Types of Soil

- Responding/dependent variables are the things that the scientist focuses his or her observations on to see how they respond to the change made to the independent variable.
- Example: Height of Plant
- This would be represented by the **y-axis of** your graph.

Comparing Types of Soil

- Experiments also have **controlled variables**. Controlled variables are quantities that a scientist wants to remain constant, and he must observe them as carefully as the dependent variables
- All other factors, or things that could be a variable, must remained controlled, or the same:
 - Pot Sizes, amount of water, sunlight, type of plant
- Why?

Other examples

- In which type of liquid will a golf ball sink the fastest?
 - Independent, dependent, control??

- Does getting more sleep help you get better grades?
 - Independent, dependent, control??

Try these

- Under which light will beans grow the tallest?
- Which design of paper airplane will glide the farthest?
- How does the amount of air pressure in a basketball affect how high it bounces?
- Does caffeine help you to type faster?

Labelling the x and y axis

The *x-axis* shows the manipulated variable (also known as the "*independent variable*", it's the one that you control, change, or compare).

The *y-axis* shows the responding variable (also known as the "*dependent variable*", it's the result, or what you measured, from the test).

Practice!

Determine range and scale

How high do the numbers go? The values of each axis on the graph must include all the data collected.

- Next we determine the scale we will use for each square on the graph.
 - This depends on space and the range used
 - All squares must be worth the same value!

Line Graph

Line graphs are used when one variable (independent) affects another, which is the dependent variable.

Useful for predicting trends

What's your conclusion? Is minimum wage increasing or decreasing over time?

Bar Graph

■ The data for this graph are non-numerical for at least one variable. There are *no dependent and independent variables*. Axes may be reversed to give a graph with the categories on the x axis.

Bar graphs can therefore be drawn horizontally or vertically. This type of graph is very useful for comparing two or more similar items.

What is your conclusion from these results?

What question is being answered? Title?

Paper Airplane experiment

Pie Graph (Circle Graph)

- As with bar graphs, pie graphs are used when the data for one variable are discrete (categories) and the data for the other variable are in the form of counts (**percentages** or proportions)
- A circle is divided according to the proportion of counts in each category.
- Not suitable for data sets with a very large number of categories (more than 6)

Should our school require students to wear uniforms? (student survey)

Music Preference for Young Adults (what's your conclusion?)

